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Anomalous scaling in two models of passive scalar advection: Effects of anisotropy
and compressibility
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The problem of the effects of compressibility and large-scale anisotropy on anomalous scaling behavior is
considered for two models describing passive advection of scalar density and tracer fields. The advecting
velocity field is Gaussian,d correlated in time, and scales with a positive exponent«. Explicit inertial-range
expressions for the scalar correlation functions are obtained; they are represented by superpositions of power
laws with nonuniversal amplitudes and universal anomalous exponents~dependent only on« and a, the
compressibility parameter!. The complete set of anomalous exponents for the pair correlation functions is
found nonperturbatively, in any space dimensiond, using the zero-mode technique. For higher-order correla-
tion functions, the anomalous exponents are calculated toO(«2) using the renormalization group. As in the
incompressible case, the exponents exhibit a hierarchy related to the degree of anisotropy: the leading contri-
butions to the even correlation functions are given by the exponents from the isotropic shell, in agreement with
the idea of restored small-scale isotropy. As the degree of compressibility increases, the corrections become
closer to the leading terms. The small-scale anisotropy reveals itself in the odd ratios of correlation functions:
the skewness factor slowly decreases going down to small scales for the incompressible case, but starts to
increase ifa is large enough. The higher odd dimensionless ratios~hyperskewness, etc.! increase, thus signal-
ing persistent small-scale anisotropy; this effect becomes more pronounced for larger values ofa.
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I. INTRODUCTION

Much attention has been paid recently to a simple mo
of passive scalar advection by a self-similar Gaussian wh
in-time velocity field, the so-called ‘‘rapid-change model
introduced by Kraichnan@1#; see, e.g., Refs.@2–9# and ref-
erences therein. Despite its simplicity, the model reprodu
many of the anomalous features of genuine turbulent hea
mass transport observed in experiments. On the other han
appears more tractable theoretically: the anomalous e
nents have now been calculated on the basis of a microsc
model and within regular expansions in formal small para
eters@3–8#. Therefore, passive advection by a ‘‘synthetic
velocity with prescribed statistics, of practical importance
itself, may also be viewed as the starting point in study
anomalous scaling in turbulence as a whole.

In the original Kraichnan model, the velocity field is take
to be Gaussian, isotropic, incompressible, and decorrel
in time. More realistic models should involve anisotropy a
compressibility. Recent studies have pointed out signific
differences between the compressible and incompress
cases@10–17#. It is noteworthy that the potential velocit
field remains nontrivial in the one-dimensional case, which
more accessible to numerical simulations and allows in
esting comparison between the numerical and analytica
sults; see Ref.@10#.

Another important question recently addressed is the
fect of large-scale anisotropy on inertial-range statistics
passively advected scalar@18–23# and vector@24–26# fields
and the velocity itself@27,28#. These studies have shown th
the anisotropy present at large scales has a strong influ
on the small-scale statistical properties of the scalar, in
1063-651X/2001/63~3!/036302~7!/$15.00 63 0363
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agreement with what was expected on the basis of cas
ideas@18–20#. On the other hand, the exponents describ
the inertial-range scaling exhibit universality and hierarc
related to the degree of anisotropy, which gives some qu
titative support to Kolmogorov’s hypothesis on the restor
local isotropy of inertial-range turbulence@17,21–28#.

In this paper we analyze the effects of the large-sc
anisotropy induced by a random source on a passive sc
by two methods: First, we carry out a zero-mode calculat
of the correlation function of the passive scalar with an a
isotropic source field and in an isotropic compressible vel
ity field decorrelated in time. Second, for the same mod
we performed a two-loop renormalization-group analysis
the asymptotic behavior of the structure functions of the p
sive scalar of arbitrary order. This paper is organized as
lows. In Sec. II, the zero-mode solution for the correlati
function for both passive density and passive tracer is c
structed. Two-loop renormalization-group analysis of t
structure functions of the passive scalar is carried out in S
III with the use of the operator-product expansion. Sect
IV is devoted to discussion of the results.

II. ZERO-MODE SOLUTION FOR PASSIVE DENSITY
AND TRACER

There are two types of diffusion-advection problem for
compressible velocity field@29#. Passive advection of a den
sity field u(x)[u(t,x) ~say, the density of an impurity! is
described by the equation

] tu1] i~v iu!5n0]2u1 f , ~1!
©2001 The American Physical Society02-1
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while the advection of a ‘‘tracer’’~say, temperature, specifi
entropy, orconcentrationof the impurity particles! is de-
scribed by

] tu1~v i] i !u5n0]2u1 f . ~2!

Here ] t[]/]t, ] i[]/]xi , n0 is the molecular diffusivity
coefficient,]2 is the Laplace operator,v(x) is the velocity
field, and f [ f (x) is an artificial Gaussian scalar noise wi
zero mean and the covariance

^ f ~x! f ~x8!&5d~ t2t8!C~r !, r[x2x8, ~3!

whereC(r ) varies noticeably onr[ur u;L, the integral tur-
bulence scale. In the presence of a preferred direction sp
fied by a unit vectorn, the functionC(r ) can be written in
the form

C~r !5(
l 50

`

Cl~mr!Pl~z!, z[
r•n

r
, ~4!

where m[1/L, Cl(mr) are coefficient functions such tha
C(r ) becomes constant atmr50 and decays rapidly fo
mr→`, z is the cosine of the angle betweenn and r , and
Pl(z) are ~d-dimensional! Legendre polynomials satisfyin
the equations

~12z2!Pl9~z!1z~12d!Pl8~z!1 l ~ l 1d21!Pl~z!50.
~5!

The anisotropy makes it possible to introduce also
mixed correlator̂ vf &}nd(t2t8)C8(r ) with some function
C8 similar to C in Eq. ~4!. This violates the evenness inn
and gives rise to nonvanishing odd correlation functions ou,
but leads to no serious alterations in the analysis. We s
discuss this case later on, and for the time being we ass
^vf &50.

In the real problem, the fieldv(x) satisfies the Navier-
Stokes equation. In the simplified model considered in@1–7#
it obeys a Gaussian distribution with zero mean and the
variance

^v i~x!v j~x8!&5d~ t2t8!Ki j ~r ! ~6!

with

Ki j ~r !5E dk

~2p!d

D0Pi j ~k!1D08Qi j ~k!

~k21m2!d/21«/2 exp@ i ~k•r !#,

~7!

where Pi j (k)5d i j 2kikj /k2 and Qi j (k)5kikj /k2 are the
transverse and longitudinal projectors, respectively,k[uku,
D0 and D08 are positive amplitude factors, andd is the di-
mensionality of the coordinate space. ForD0850 ~the incom-
pressible case! the models~1! and ~2! coincide. For 0,«
,2, the so-called eddy diffusivity

Si j ~r ![Ki j ~0!2Ki j ~r ! ~8!

has a finite limit form→0:
03630
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Si j ~r !5Dr «F ~d1«211a!d i j 2«~a21!
r i r j

r 2 G , ~9!

with

D5
2D0G~2«/2!

~4p!d/22«~d1«!G~d/21«/2!
, a[D08/D0 , ~10!

whereG is the Euler gamma function~note thatD anda are
both positive!. In the renormalization-group~RG! approach,
the exponent« plays the same role as the parameter«54
2d does in the RG theory of critical behavior; see Refs.@8#,
@16#. The relationD0 /n0[L« defines the characteristic u
traviolet wave-number scaleL.

The issue of interest is the behavior of various correlat
functions in the inertial range specified by the inequalit
Lr @1, mr!1. In the models~1!–~9!, odd multipoint corre-
lation functions of the scalar field vanish, while the ev
equal-time functions satisfy linear partial differential equ
tions; see, e.g.,@1–7#. The equation for the equal-time pa
correlation functionD(r )[^u(t,x)u(t,x8)& is easily derived
from the Schwinger-Dyson equations~see Refs.@16,25#! and
has the form~here and below in equal-time functions, w
omit time arguments common to all the quantities!

2n0]2D~r !1@Si j ~r !] i] j #D~r !5C~r ! ~11!

for the model~2! and

2n0]2D~r !1] i] j@Si j ~r !D~r !#5C~r ! ~12!

for the model~1!, with C(r ) from Eq. ~4! and Si j (r ) from
Eq. ~9!. In the presence of the preferred directionn, the
correlation function can be decomposed into Legendre p
nomials,

D~r !5(
l 50

`

Dl~r !Pl~z!, ~13!

where the coefficient functions are sought in the powerl
form

Dl~r !.Dlr
z l. ~14!

Owing to the evenness inn, only even polynomials contrib-
ute to Eq.~13!.

It is well known ~see, e.g., Refs.@3–6#! that the nontrivial
inertial-range exponents are determined by the zero mo
i.e., solutions of Eqs.~11! and~12! neglecting both the forc-
ing @C(r )50# and the dissipation (n050). The homoge-
neous equations are SO(d) covariant, and the equations fo
the coefficient functions in Eq.~13! foliate. Substituting the
representations~13!,~14! into Eqs. ~11!,~12! and using the
relations ] iSi j (r )5a«(d1«)Dr j r

221«, ] i] jSi j (r )5a«(d
1«)(d221«)Dr 221«, then gives quadratic equations fo
the exponentsz l in Eq. ~14!, namely,

z l~z l1d22!2 l ~ l 1d22!1
z l~z l21!«~a21!

~d211a1«!
50

~15!
2-2
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for the tracer, which has two solutions,z l522d2 l 1O(«)
and

z l5 l 2«
l ~ l 21!~a21!

~d12l 22!~d211a!
1O~«2!, ~16!

and

z l~z l1d22!2 l ~ l 1d22!

1«
z l~z l21!~a21!1a~d1«!~2z l1d221«!

~d211a1«!
50

~17!

for the density, with two solutions,z l52d2 l 1O(«) and

z l5 l 2«
l ~ l 21!~a21!1ad~d12l 22!

~d12l 22!~d211a!
1O~«2!.

~18!

The standard arguments@3–6# show that only the secon
solutionz l5 l 1O(«) is ‘‘admissible.’’ It has the form

z l5@2~211d1a1a«!#21

3$2213d2d212a2da1«2d«1a«

1@~223d1d222a1da2«1d«2a«!2

24l ~2213d2d21 l 2dl12a2da2 la

12«2d«2 l«!~211d1a1a«!#1/2% ~19!

for the tracer and

z l5@2~211d1a1a«!#21$2213d2d212a2da

1«2d«1a«22da«22a«21@~223d1d222a

1da2«1d«2a«12da«12a«2!2

24~211d1a1a«!~22l 13dl2d2l 1 l 22dl2

12la2dla2 l 2a12l«2dl«2 l 2«22da«

1d2a«22a«212da«21a«3!#1/2% ~20!

for the density. Fora50, these solutions coincide with eac
other and with the exponents obtained earlier in Refs.@3,9#
for the incompressible case.

The exponents~19! and~20! exhibit a hierarchy related to
the degree of anisotropy:

z l.z l 8 if l . l 8, ~21!

i.e., the smaller the indexl, the smaller the exponent an
consequently, the more important the contribution to
inertial-range behavior. The leading term is given by the
ponentz0 from the ‘‘isotropic shell.’’ This behavior is illus-
trated by Figs. 1 and 2.
03630
e
-

Although the hierarchy holds for all values ofa(]z l /] l
.0), the corrections become closer to leading terms
a increases:]2z l /] l ]a,0. This behavior is illustrated by
Fig. 3.

Since Eq.~2! is invariant with respect to the shiftu→u
1const, the relevant quantities for the tracer are the so-ca
structure functions,

Sn~r !5^@u~ t,x!2u~ t,x8!#n&, r5x2x8, ~22!

with the Legendre decomposition

Sn~r !5(
l 50

`

Snlr
znlPl~z! ~23!

with some numerical coefficientssnl . Comparison with Eqs.
~13! and ~14! gives z2l5z l with z l from Eq. ~19! for all l
.0. For l 50, the constant term withz050 drops out from
the difference in Eq.~22!, and the behavior of the isotropi
shell is determined by the subleading exponent (22«); see,
e.g., Ref.@17#. Note that the hierarchy relations~21! remain
valid also forS25@D(0)2D(r )#/2.

For the density case, the exponent

z05
2«~d1«!a

~d21!1a~11«!
,0

@the square root in Eq.~20! is taken explicitly# gives the
leading contribution for both the pair correlation functio
D(r ) and the structure functionS2 in Eq. ~22!, in agreement
with the exact solution of@16# ~for d51, see Ref.@10#!. Note
that for this case the anomalous scaling emerges alread
the pair correlation function, as in the model of a passiv
advected magnetic field studied in Ref.@30#.

III. TWO-LOOP RENORMALIZATION-GROUP ANALYSIS
OF STRUCTURE FUNCTIONS

The higher-order structure functions can be studied us
the field theoretic renormalization group and operator pr
uct expansion. A detailed exposition of these techniq
and practical calculations can be found in Refs.@8,16,17,
21,25#; below we confine ourselves to only the necess
information.

The field theoretic models corresponding to the stocha
equations~1! and~2! are multiplicatively renormalizable; the
corresponding RG equations have infrared stable fi
points. In particular, this leads to the following represen
tions for the structure functions in the model~2! in the iner-
tial range (Lr @1, mr!1):

Sn5D0
2n/2r n~12«/2!(

a
Ca~r ,z!~mr!Da. ~24!

Here Ca(r ,z) are coefficients analytical inm and finite for
m→0, andDa are the critical dimensions of the composi
operators entering in the operator product expansion.

The leading zero-mode contribution in thel th shell forSn
is determined by the critical dimensionDnl of the irreducible
2-3
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tracelessl th rank tensor operator built ofn fieldsu and mini-
mal possible number of derivatives. Forl<n such an opera-
tor has the form

] i 1
u¯] i l

u~] iu] iu!p1¯ , n5 l 12p. ~25!

Here the dots stand for the appropriate subtractions involv
the Kroneckerd symbols, which ensure that the resultin
expressions are traceless with respect to contraction of
given pair of indices, for example,] iu] ju2d i j ]ku]ku/d,
] iu] ju]ku2(d i j ]ku1d ik] ju1d jk] iu)/(d12), and so on.

The exponentsznl5n(12«/2)1Dnl are calculated in the
form of series in«, whereznl5n1Sk51

` znl
(k)«k. In the first

order in«,

FIG. 1. Behavior of the exponentsz l ( l 52, 4, and 6 from the
bottom to the top! from Eq. ~19! vs « in three dimensions fora
50 ~thin lines! anda5` ~thick lines!.
u

03630
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znl
~1!52

1

~d12! H ~n2 l !~d1n1 l !

2

1
l ~ l 21!~a21!1a~n21!~n1 l 22!

~d211a! J . ~26!

For the incompressible model, the exponent from the i
tropic shell (l 50) was obtained in Refs.@3,4# to the order
O(1/d) and in Refs.@5,6# to the orderO(«); the results for
n53 are given in Ref.@7#. The general case can be found
Ref. @21#; see also@22,31#. For generala.0, the exponent
zn0 was found in Ref.@14# @see also@15#; in the notation of
those papers,̀ 5a/(d211a)#. The result for generaln,l is
given in Ref.@21# ~for more details, see@17#!.

We have performed the two-loop calculation of the exp
nentsznl and obtained:

FIG. 2. Behavior of the exponentsz l ( l 50, 2, 4, and 6 from the
bottom to the top! from Eq. ~20! vs « in three dimensions fora
50 ~thin lines! anda5` ~thick lines!.
znl
~2!5

@2d~d11!1d~d222d24!a1~3d14!a2#~dk12k2!

d~d12!3~d211a!2 1
~n22!

4d~d12!3~d14!~d211a!2

3„8d@2~d215d110!2~d22!~d14!a1~2d217d12!a2#k1

14@~d11!~3d3117d2120d224!2~d14!~d317d222d24!a1~d11!~5d218d224!a2#k2

13~d12!h~d!$4d@31~d24!a2~d21!a2#k11@23~d11!~d215d24!

12~d3110d32d24!a23~2d323d24!a2#k2‰!, ~27!
where we have writtenk15n(n21), k25(n2 l )(n1 l 22
1d), h(d)5F(1,1,d/211;1/4), andF(a,b;c;z) is the hy-
pergeometric function; see, e.g., Ref.@32#. For integer space
dimension d one has h(1)52p/(3)) and h(2)
54 ln(4/3), and the others can be obtained from the rec
sion relation

3h~d!1
d

d12
h~d12!54, ~28!

valid for all d.
r-

For the incompressible casea50, Eq. ~27! becomes

znl
~2!52

~d11!~dk12k2!

~d12!3~d21!2 1
~n22!

4d~d12!3~d14!~d21!2

3$28d~d215d110!k1

14@~d11!~3d3117d2120d224!#k2

19~d12!h~d!@4dk12~d11!~d215d24!k2#%.

~29!
2-4
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The results forl 50 and 2 were obtained earlier in Re
@8#. In that paper, they were expressed in terms of the fu
tions h1(d)5h(d12) and h2(d)5h(d14), which can be
reduced to the form~29! using the relation~28!.

For d51, only the exponentszn0 and zn1 make sense
~traceless operators of the rankl>2 vanish identically!.
They are independent ofa ~the velocity is purely potential!
and have the form (l 50 if n is even andl 51 if n is odd!

zn5n1n
«

2
2

n2«

2
1

n~n21!~n22!«2p

6)
1O~«3!.

~30!

The expression~30! is in agreement with theO(«) result of
Ref. @10# and theO(«2) result of Ref.@16# ~in the latter, the
density case was studied, but in one dimension these mo
can be related by the replacementu→]u).

For l .n, the leading operators contain more derivativ
than fields, the corresponding exponents behave asznl5 l
2n1O(«), and the corresponding terms in representat
~23! rapidly decrease formr→0.

Now let us return to the density model~1!. It is not in-
variant with respect to the shiftu→u1const, the operators
un have nontrivial critical dimensions,

Dn5nS 211
«

2D2
an~n21!d«

2~d211a!

1
a~a21!n~n21!~d21!«2

2~d211a!2

1
a2n~n21!~n22!dh~d!«2

4~d211a!2 1O~«3!, ~31!

and different terms in the structure functions have differ
scalings~see Ref.@16#!. The relevant quantities are then th
equal-time pair correlation functions of the powers ofu,
which have the form

^un~x!8&}n0
2~n1p!/2L2~n1p!~Lr !2Dn2DpFnp~r !~Mr !Dn1p.

~32!

FIG. 3. Behavior of the exponentsz l ( l 52, 4, and 6 from the
bottom to the top! from Eq. ~19! vs `5a/(d211a) for «51, d
53 ~thin lines!, andd52 ~thick lines!.
03630
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The leading terms in the Legendre decompositions for
scaling functions,

Fnp~r !5(
l 50

`

Cl
~np!~mr!Pl~z!, ~33!

are given by the contribution from the scalar operatorsun1p

without derivatives,C0
(np)}(mr)Dn1p.

The operators that determine corrections (l .0) to the
leading term withl 50 necessarily containl derivatives and,
in contrast to the tracer case, the correction exponents d
from the leading ones by a few units,l 1O(«). In particular,
the leadingl 52 correction is related to the operator

@] iu] ju2d i j ~]ku]ku!/d#un1p22,

whose dimension equals

21~n1p!~211«/2!2
«

~d211a!

3H ~n1p!~n1p21!ad

2
1

2~a21!

~d12! J 1O~«2!.

Note also that the exponentsz l in Eqs.~19! and ~20! are
related to the composite operators with two fieldsu andl free
indices, which~up to total derivatives and subtractions wi
the d symbols! reduce to the formu] i 1

¯] i 1
u; the one-loop

calculation confirms theO(«) results~16! and ~18!.
Since the leading terms of the even functions~23! are

determined by the exponents of the isotropic shell~i.e., those
related to scalar composite operators!, the inertial-range be-
havior of the former is the same as in the isotropic mod
This gives quantitative support both to Kolmogorov’s h
pothesis on the restored local isotropy of the inertial-ran
turbulence and to the universality of anomalous expone
with respect to the way in which the turbulence is excited

On the contrary, the small-scale anisotropy reveals its
in odd correlation functions~which are nonzero in the pres
ence of a mixed correlator̂vf & or the constant mean grad
ent of the scalar field!. It follows from the above analysis tha
the dimensionless ratiosRn[S2n11 /S2

(2n11)/2 for the tracer
case in the inertial range have the form

Rn}~mr!D2n11.1, ~34!

where D2n11,15z2n11,12(2n11)(22«) is the critical di-
mension of thevector composite operator~25! built of 2n
11 scalar gradients. From Eq.~26! we find, to the first order
in «,

D2n11,15«@~d211a!~d1224n2!28an2#/2~d12!

3~d211a!. ~35!

For small a, the skewness factorR1 decreases formr
→0, but more slowly than expected on the basis of casc
ideas~the latter suggest that the odd ratios should vanish
smallmr, where the turbulence is expected to become iso
pic!, while the higher-order ratios increase, thus signaling
2-5
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persistence of small-scale anisotropy. Whena increases,R1
also becomes divergent formr→0 provided a is large
enough@namely,a.(d21)(d12)/(102d)1O(«)#, while
the higher-order ratios diverge even faster.

It was argued in Refs.@13–15# that the anomalous scalin
regime in the models at hand breaks down if« anda are both
large enough@`[a/(d211a).d/j2# and an inverse en
ergy cascade with no anomalous scaling takes place.
effect obviously cannot be detected within the« expansion.
It is noteworthy that the exact nonperturbative expone
~19! and ~20! show no hint of anomaly at the threshold̀
5d/j2, in contrast to the exact exponents for the magne
case which become complex when the anomalous sca
regime breaks down; see Refs.@30,24#.

IV. CONCLUSION

To conclude, we have studied the effects of compress
ity and large-scale anisotropy on the anomalous scaling
havior in two models that describe passive advection of s
lar tracer and density fields. The advecting velocity field
Gaussian andd correlated in time, and its spatial correlatio
scale with a positive exponent«. Explicit inertial-range ex-
pressions for the scalar correlation functions have been
tained; they are represented by superpositions of power
with nonuniversal amplitudes and universal anomalous ex
nents~dependent only on« and a, the compressibility pa-
rameter!. The complete set of anomalous exponents for
pair correlation functions has been found nonperturbativ
in any space dimensiond, using the zero-mode approach. F
higher-order correlation functions, the anomalous expone
have been calculated toO(«2) using RG techniques. As in
the incompressible case, the exponents exhibit a hiera
,

s.

v.
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related to the degree of anisotropy; the leading contributi
to the even correlation functions are given by the expone
from the isotropic shell, in agreement with the idea of r
stored small-scale isotropy.

This picture seems rather general, being compatible w
that established recently for Navier-Stokes turbulence@28#,
passive scalar advection by the two-dimensional Nav
Stokes field@23#, and passive advection of scalar@21# and
vector @24,25# fields by a white-in-time incompressible syn
thetic velocity field.

As the degree of compressibility increases, the correcti
become closer to the leading terms; cf. Ref.@26# for the
passive advection of a magnetic field.

In contrast, the small-scale anisotropy reveals itself in
odd ratios of correlation functions: the skewness fac
slowly decreases down to small scales for the incompress
case@7#, but begins to increase ifa is large enough. The
higher-order odd dimensionless ratios~hyperskewness, etc.!
increase, thus signaling the persistent small-scale anisotr
cf. Refs. @17,21,23#. This effect becomes even more pr
nounced for larger values ofa; cf. Ref. @26# for the magnetic
case.
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